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Effects of Artificial Gravity: Central Nervous System
Neurochemical Studies

Overview of Project

The major objective of this project was to assess chemical and

morphological modifications occurring in muscle receptors and the central

nervous system of animals subjected to altered gravity (2 X Earth gravity

produced by centrifugation and simulated micro gravity produced by

hindlimb suspension). The underlying hypothesis for the studies was that

afferent (sensory) information sent to the central nervous system by

muscle receptors would be changed in conditions of altered gravity and

that these changes, in turn, whould instigate a process of adaptation

involving altered chemical activity of neurons and glial cells of the

projection areas of the cerebral cortex that are related to inputs from

those muscle receptors (e.g., cells in the limb projection areas).

The central objective of this research was to expand understanding of

how chronic exposure to altered gravity, through effects on the vestibular

system, influences neuromuscular systems that control posture and gait.

The project used an approach in which molecular changes in the

neuromuscular system were related to the development of effective motor

control by characterizing neurochemical changes in sensory and motor

systems and relating those changes to motor behavior as animals adapted

to altered gravity. Thus, the objective was to identify changes in central

and peripheral neuromuscular mechanisms that are associated with the

reestablishment of motor control which is disrupted by chronic exposure

to altered gravity.

Summary of the Research

Effects of Simulated Micro-gravity

Micro-gravity was simulated using the tail suspension method.

Specific details of this method and its application for this research are in

D'Amelio et al., 1996. A principle objective of this experiment was to

evaluate, quantitatively, g-aminobutyric acid immunoreactivity (GABA-

IR) in the hindlimb representation of the rat somatosensory cortex after
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14 days of hindlimb unloading. This study was focused on GABAergic

neurons since numerous lines of research have demonstrated

modifications in the level of GABA-IR or glutamic acid decarboxylase

(GAD) immunoreactivity in cortical interneurons when sensory activity is

altered by surgical manipulation.

Fixation and Sectioning. After 14 days of tail suspension the animals

and their controls were deeply anesthetized with Metophane® and

immediately perfused via the heart with 50 ml 0.9% saline, followed by

500 ml of a fixative made up of 1% paraformaldehyde and 2%

glutaraldehyde in 0.1 M phosphate buffer, pH 7.4. The brains were removed

the same day, immersed in fresh fixative and stored at 4°C.

The right hemisphere was coronally blocked between Bregma -l.8mm

and Bregma -3.6mm where the somatosensory representation of the

hindlimb is conspicuous and associated with the presence of the rostral

hippocampus (Paxinos and Watson, 1986). At this level the more rostrally

located forelimb representation is no longer present (rostral to Bregma

-1.8 the somatosensory cortex contains both hindlimb and the laterally

adjacent forelimb representations. The hippocampus is not visible). Forty

_Jm-thick coronal sections were cut on a Vibratome® and collected in TBS

(0.05 M Tris buffer-0.9% saline, pH 7.6). Twenty serial sections per animal

were used for the staining procedures; 15 were stained for

immunocytochemistry and 5 were Nissl-stained with cresyl violet to

identify the cytoarchitectonic layers of the hindlimb representation.

GABA Immunocytochemistry. Floating sections were first incubated

for 5-10 min at room temperature (RT) with 3% hydrogen peroxide in 10%

methanol in TBS and subsequently rinsed 4 times in TBS x 30 min (RT).

The sections were then immersed in GABA antiserum (Chemicon, Cat.#

AB131) or control serum (preimmune rabbit serum) diluted at 1:1000 in

TBS for 48-72 h at 4 ° C, with orbital agitation. Then, they were rinsed 4

times in TBS x 30 min (RT) and incubated for 60 min (RT) in swine anti-

rabbit IgG diluted 1:50 in TBS. The sections were rinsed 4 more times in

TBS x 30 min (RT) and then incubated for 60 min (RT) with rabbit

peroxidase-antiperoxidase complex (Sigma) diluted 1:200 in TBS. To

develop reaction product the sections were immersed in 12.5 mg

diaminobenzidine tetrahydrochloride in 50 ml TBS + 5 _1 30% hydrogen

peroxide for 5-8 min. Finally, they were rinsed in TBS, 2 changes x 10 min
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(RT), mounted on gelatin coated slides, air-dried and coversliped with

Permount®.

The sections from pairs of experimental and control animals were

processed together in the same solutions for consistent immunostaining.

For identification purposes, the hemisphere of the control rat was marked

with a small hole at the level of the striatum. Sections of each suspended

and control pair were placed on the same glass slide for counting of

GABA-IR cells.

Methodology for Quantitative Analysis. The hindlimb somatosensory

cortex was identified in Nissl-stained slides by the prominent aggregation

of granular cells in layer IV. The boundaries of the hindlimb

representation were drawn on a piece of white paper. The projected image

of the sections stained with GABA antiserum was superimposed on the

drawing and GABA-IR cells intensely or moderately stained were marked

on the paper. Blood vessels as well as meningeal foldings served as

reference marks for each section. The marking of the cells slightly

exceeded the lateral and medial boundaries of the hindlimb representation.

Subsequently, the coverslips of the anti-GABA stained slides were

removed by soaking in xylene and the sections were Nissl-stained with

cresyl violet and remounted. The Nissl-staining of the slides in which the

counting of the GABA-IR cells was previously made, gave us more

confidence in tracing the boundaries of the area and demarcating the

cortical laminae based on the prominent granular aggregates of layer IV.

The projected image of these sections was drawn on a translucent sheet

of paper. The drawing included the boundaries of the hindlimb

representation, the reference marks and the dividing lines of six cortical

layers identified as layer I, II/111, IV, Va, Vb and Vl (see Zilles and Wree,

1985). This drawing was then overlaid on the paper that had the markings

of GABA-IR cells. The boundaries of the hindlimb cortex were then

corrected and GABA-IR cells were counted in each layer on the translucent

paper (See figs. 1 and 2)

The image of each layer on this translucent sheet was captured into a

Macintosh Centris 650 computer using a Sierra Scientific Model MS4030

CCD tube camera that had a macro Nikon/Nikor 55 lens and a Scion

Technology LG-3 frame grabber board in the Nubus slot of the computer.

An image of standard square inches etched in the copy stand was also
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captured and then used to compute the correction factor for the distortion

of the aspect ratio introduced by the camera lens and the computer

monitor. Quantitative measurements of the cortical layers were done blind

by one of us (L.C.W.). The digitized images were magnified at 2x, and a

sharpening filter was used prior to measuring. Measurements are based on

four to eight GABA/Nissl-stained slides for each of the three rats in each

group.

Results and Conclusions. A reduction in number of GABA-

immunoreactive cells with respect to the control animals was observed in

layer Va and Vb. GABA-containing terminals were also reduced in the same

layers, particularly those terminals surrounding the soma and apical

dendrites of pyramidal cells in layer Vb. On the basis of previous

morphological and behavioral studies of the neuromuscular system of

hindlimb-suspended animals, it was suggested that the unloading due to

hindlimb suspension alters afferent signalling and feedback information

from intramuscular receptors to the cerebral cortex due to modifications

in the reflex organization of hindlimb muscle groups. We proposed that the

reduction in immunoreactivity of local circuit GABAergic neurons and

terminals is an expression of changes in their modulatory activity to

compensate for the alterations in the afferent information.

Development of Method for Quantifying GABA-IR

A computer-based method for the quantitative assessment of the area

occupied by immunoreactive terminals in close apposition to nerve cells

in relation to the perimeter of the cell soma was developed to facilitate

analysis of GABA-IR. This method is based on Fast Fourier Transform

(FFT) routines incorporated in NIH-Image public domain software.

Pyramidal cells of layer V of the somatosensory cortex outlined by GABA

immunolabeled terminals were chosen for our analysis. A Leitz Diaplan

light microscope was employed for the visualization of the sections. A

Sierra Scientific Model 4030 CCD camera was used to capture the images

into a Macintosh Centris 650 computer. After preprocessing, filtering was

performed on the power spectrum in the frequency domain produced by the

FFT operation An inverse FFT with filter procedure was employed t o

restore the images to the spatial domain. Pasting of the original image to

the transformed one using a Boolean logic operation called "AND"ing
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produced an image with the terminals enhanced. This procedure allowed

the creation of a binary image using a well-defined threshold of 128.

Thus, the terminal area appears in black against a white background. This

methodology provides an objective means of measurement of area by

counting the total number of pixels occupied by immunoreactive terminals

in light microscopic sections in which the difficulties of labeling

intensity, size, shape and numerical density of terminals are avoided.

Effects of Hyper-Gravity

Quantitative evaluation of GABA-IR in the hindlimb representation of

the rat somatosensory cortex after 14 days of exposure to hypergravity

(hyper-G). The computer-assisted image procedure described in the

foregoing was employed in this investigation. The methodology for

fixation and sectioning of the tissue and for immunocytochemical staining

used the procedure applied in the hindlimb suspension study.

Results and Conclusions. The area of GABA-IR axosomatic terminals

apposed to pyramidal cells of cortical layer V was reduced in rats exposed

to hyper-G as compared with control rats which were exposed either to

rotation alone or to vivarium conditions (see Table I). Thus, chronic

expsure to either simulated micro-gravity and hyper-gravity produced by

centrifugation elicited changes in GABA-IR in areas of the sensory motor

cortex which recieve projections from muscle afferents.

Table 1. Average ratio of terminal area to perimeter of the soma for

each of the 11 rats used in the experiment. Data are presented for staining

triplets of three rats where tissue of centrifuged (3G), vivarium (VIV) and

rotation (RC) control rats were immunostained concurrently and mounted

on single slides. Numbers in parentheses identify the number of slides and

the number of cells (slides; cells) contributing to each mean for each rat

We belive that the reduction observed in GABA-IR of the terminal area

around pyramidal neurons reveals that inhibitory influences in the central

nervous system respond to adjust central motor control programs in

conditions of non-invasive manipulations, i.e., altered gravity. On the

basis of behavioral studies of the neuromuscular system of centrifuged

animals, we believe that the modifications in muscle activity occurring

during exposure to hyper-G alters the afferent input and feedback
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information from muscle receptors which in turn affects the processing

of information in areas of the cerebral cortex related to the

proprioceptive input from muscle groups. As a consequence, priorities for

muscle recruitment are altered at the cortical level. We believe the

changes in GABA-IR that occur following chronic exposure to altered

gravity reflect changes in CNS neurotransmitter systems that are involved

in adaptation of the neuromuscular system to new environmental

conditons. Because GABA-IR is altered from chronic exposure to either

simulated micro-gravity and hyper-gravity, we believe the GABAergic

system is importantly involved in as a "basic" adaptive mechanism in

motor control.

Staining
triplets 3 G VIV RC

Group 1 6.78 (3; 19) 9.56 (3; 18) 8.96 (3; 17)

Group 2 5.54 (3; 23) 6.37 (3; 24) 4.88 (2; 16)

Group 3 5.27 (5; 40) 9.41 (5; 39) 8.94 (5; 40)

Group 4 4.95 (3; 17) 6.16 (3; 13) X

Mean 5.63 7.88 7.59

SD 0.80 1.86 2.35

SEM 0.40 0.93 1.36

t test vs VIV 3.37 -- 0.25

p value <.05 - - >.20
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ABSTRACT

The "slow" antigravity muscle adductor longus was studied in rats after 14 days of spaceflight' (SF). The

techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-
CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber
atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM
immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or
absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal

sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These
observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the
neuromuscular junction may take place during spaceflight.

In a separate study, GABA immunorcactivity (GABA-IR) was evaluated at the level of the hindlimb

representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension
("simulated" microgravity). A reduction in number of GABA-immunoreactive cells with respect to the
control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same

layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb.
On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight
and hindlimb suspension it is suggested that after limb unloading there arc alterations of afferent signaling
and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the

reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA
immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to
compensate for the alterations in the afferent information.

INTRODUCTION

The first section of this report will place emphasis upon some particular responses to weightlessness
observed in the adductor longus muscle of rats flown in the Soviet COSMOS flight 2044, namely, 1)
muscle fiber in.iury, 2) regenerative phenomena, and 3) alterations of the neuromuscular junctions. In
previous studies, investigations carried out upon different muscles after both flight and ground-based
(mostly hindlimb suspension) experiments have provided information on the effects of microgravity and
"sire ulated" microgravity upon morphology, metabolic properties, histochcmistry and electrophysiology
(see Edgerton and Roy, for review, 1994). Through these studies we have learned thai "slow" muscles,

mostly composed of type I fibers (e.g.. soleus, adductor tongas), carry the burden of the changes while
"fast" muscles, mostly composed of type Il fibers (e.g., tibialis anterior) are relatively unaffected.

The second seclion of this report will deal with the possible consequences that limb unloading may have

upon those areas of the central nervous systcm related to senso,y inputs from muscles. Our assumption



--based on our current behavioral and morphological studies (D'Amelio et a/.,1987; D'Amelio and
Daunton, 1992; Fox et al., 1993,1994)-- was that muscle atrophy produced by limb unloading could
modify sensory inputs arising from muscle receptors to the cerebral cortex. We focused our analysis on the
behavior of GABAergic neurons of the hindlimb representation of the somatosensory cortex since numerous
lines of research have demonstrated modifications in the level of GABA-IR or glutamic acid decarboxylase
(GAD) immunoreactivity in cortical interneurons when sensory activity is altered by surgical manipulation
(Hendry and Jones, 1986; Warren et al., 1989; Akhtar and Land, 1991; see also Jones, 1990).

MATERIAL

Muscle Study

Wistar-derived male rats (SPF) from the Institute of Endocrinology, Bratislava, Czechoslovakia, aged
approximately 3.5 months and weighing on average 180 grams at launch, were used in this experiment.
Five animals per group (1 flight group and 3 control groups) were employed. The animals were not
subjected to any type of invasive procedure. The flight animals remained for 14 days exposed to the space
environment. Animal handling, launching details, as well as the procedures employed on muscle tissue have
been described elsewhere (D'Amclio and Daunton, 1992).

Cerebral Cortex Study

Hindlimb unloading by tail suspension (HLS) to simulate some of the effects of weightlessness on muscles
observed following spaceflight (SF) (see Ilyin and Oganov, 1989; Thomason and Booth, 1990: Edgerton
and Roy, 1994, for reviews) was employed for this study. Six Sprague-Dawley rats (200-250 g) were
employed. Three served as controls and three were suspended (HLS) by the tail for 14 days. The hindlimb
representation of the somatosensory cortex was identified in Nissl-stained slides by the prominent
aggregation of granular cells in layer IV. GABA-IR cell counts were done on pair of sections (control and
experimental) on the same slides. Particulars of suspension procedure, perfusion of animals,
immunostaining and meth_dology for quantitative analysis of GABAergic cells have been published
elsewhere (D'Amelio et al., 1996)

RESULTS

Muscle Study

The main alterations observed in all the flight animals, and not in any of the control animals, were myofibcr
atrophy, segmental necrosis (frequently accompanied by extensive cellular infihration composed of
macrophages, polymorphonuclear leukocytes and mononuclear cells) (Figure 1) and regenerating myofibcrs
that were immunoreactive to N-CAM (Figure 2). For the quantitative assessment of myofiber atrophy Z

band length was measured to approximate myofiber diameter in electron microphotographs. In the flight
animals Z band length ranged from 1,460A to 2,600A with a mean of 2,095 A while in the control animals
the range was from 3,10(1A to 3,500A with a mean of 3,109 A (F(1,6)= 8.55, p= .0265).
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Fig 1. Flight animals. In (A), longitudinal sections show segmental necrosis of myofibers
(arrowheads) accompanied by inflammatory cellular infiltration, in (B), atrophic fibers
(arrowheads), edema and cellular infiltrates mainly composed of histiocytes and polymorfonuclear
leukocytes. From D'Amelio and Daunton (1992), _'ith permission from the publisher.

A B

Fig 2. In (A) an N-CAM immunoreactive regenerating myofiber is shown. (B) High magnification of a
regenerating myofiber reveals that the cytoplasm contains abundant rihosomal aggregates associated with
bundles of still disorganized myofilaments (MF). Immature Z bands (Z) are also consl)icuous. A visible
basement membrane (arrows) surrounds the cell. From D'Amelio and Daunton (1992), _ith permission
from the publisher.

The most salient changes of the neuromuscular junctions wcrc: absence of synaptic \'csiclcs with

replacement by microtubules and neurofilamenls, interposition of Schwann cell processes between pro- and
postsynaptic membranes, "unemployed" axonal spaces with shalhp, v primary clefts, complete dcgcnc_ation
of axon terminals, and axonal sprouting (Figures 3 and 4). Of the 4(I ncuromuscular.iunctions from fli,eht

animals 24 (89%) showed one or more of these changes. In thc 38 neuromuscular junclions ln_m control

animals only 11% showed one or more of thcsc changes (X 2 = 23.38: p < .{)l)()l). Nt_ altcration.s ,_1 muscle
receptors (i.e., muscle spindles) was seen in our preparati{ms.
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Fig. 3. (A) Synchronous control. Neuromuscular junction showing a preterminal axon (arro_vs) that

gives rise to three axon terminals (Ax) apposing normal junctional folds. (B) Flight animal. The figure
shows an axon profile almost devoid of synaptic vesicles and containing microtubular structures and few
neurofilaments. From D'Amelio and Daunton (1992), with permission from the publisher.

A B

Fig. 4. (A) Flight animal. Neuromuscular junction displaying shrunken axon profiles (Axl and
Ax2)occupied by myelin figures. Ax3 is completely devoid of synaptic vesicles. Schwann cell processes with
degenerative alterations surround Axl and Ax2 (arrows) while Ax3 is covered by identifiable Sch_ann
cell processes (arrowhead). (B) Flight animal. A myofiber undergoing necrosis (NF) shows dissolution of
mynfibrillar architecture, remains of altered myofibrils (*) and chromatin clumping and lysis of nuclei. A
neuromuscular junction displays an elliptical axon profile (Ax) and .junctional folds of apparenlly normal
nmrl)hologicai characteristics. The reacti,,n product of the synaptie cleft and junctional folds corresponds to
esterase activity revealed by the staining procedure used to localize motor endplates. A small axon

suggestive of an axonal sprout (arrow and inset) occupying the same posl-synaptic space as the main axon
terminal is separated from the latter by Sch_vann cell processes that also cover the sprout (arrowheads in
inset). From D'Amelio and Daunton (1992), with permission from the publisher.



Cerebral Cortex Study

The number of GABA-1R celis/mm 2 of the hindlimb representation was determined for each section lying

within the boundary defined by the presence of the rostral hippocampus (Paxinos and Watson, 1986). A
total of more than 7600 GABA-IR cells were identified. Cell counts on sections of HLS and control rats that

were processed in the same immunostaining solutions were expressed for HLS as a percentage of control

(HLS GABA-IR cells/mm 2)

(CONTROL GABA-IR cells/mm 2) X 100

GABA-IR cells were scattered in all cortical layers, but with the highest concentration in layer IV and lower
concentrations in layers I and VI. The number of GABA-IR cells was reduced in rats subjected to HLS.
Effects of HLS, expresscd as the percentage of reduction in GABA-IR cells, in each cortical layer showed
that the reduction in GABA-IR cells varied among cortical layers with significant reductions occurring in
layers Va and Vb ( 32.75% and 22.07% respectively). Although quantitative assessment of GABAergic
terminals ("puncta") targeting pyramidal cell soma and proccsses was not performed, it was obvious that
they were markedly reduced in number in layers Va and Vb when compared with controls (Fig. 5).
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Fig. 5. Microphotographs of hindlimb somatosensory cortex at the level of layer Vb stained with GABA
antiserum. (A) Tail-suspended animal. The pyramidal cells appear almost totally deprived of peripheral
GABA-IR terminals. Note that the neuropil also shows very few terminals (arrowhead) as compared with
the control in (B). (B) Control animal. Pyramidal cells surrounded by GABA-containing terminals
(arrows). Numerous GABA-IR terminals are also conspicuous in the neuropil (arrowheads). PC,
pyramidal cell; G, GABAergic cell. Magnification: 800x. From D'Amelio et al. (1996"), v)'ith permission
from the publisher.

DISCUSSION

A prolific literature cxists on the numerous factors involved in triggering the process of muscle atrophy and
subsequent deterioration of the myofibrillar structure in conditions of microgravily. The structural a_d
metabolic foundations underlying these changes have been reviewed by Ilyin and Oganov (1989).
Denervation-induced changes at the neuromuscular junctions have been reported in both spaceflight and
ground based experiments (hindlimb unloading by tail suspension) as well {,Riley et al.. 1990; ll'ina-
Kakueva and Portugalov, 1977: Baranski et al., 1979; D'Amelio et al., 1987: Pozdny',tkov et al., 1988). It
is interesting to note that most of the alterations that we have described in the adductor longus muscle must
have taken place

during spaceflighl and not as a consequence of I_OSt-Ilight exercise since lhe flight animals wcrc sacrificed
within approximately 3-11 hours after landing, it has been shown that it takes 2-3 days IoF typical



at the cortical level. 1,1 these modifications local circuit GABAergic neurons of the cerebral cortex are the
most logical candidates to modulate the discharge frequeqcy of pyramidal cells (see Jones, 1993) since: a)
The majority of identified local circuit neurons in the cerebral cortex are GABAergic (White, 1989), b)
GABAergic cells are present in all layers of the mammalian cerebral cortex (Ribak, 1978; Houser et at.,
1984; White, 1989) and c) The main synaptic target of all classes of GABAergic neurons are the pyramidal

cells and their processes (White, 1989). Furthermore, experiments primarily concerned with neuronal
receptive fields in the somatosensory cortex have shown that GABA-mediated intracortical inhibition
specifies size and thresholds of receptive fields of major neuronal subgroups (Hicks and Dykes, 1983;
Dykes et al., 1984; see also Jacobs and Donoghue, 1991). It has been shown that the cortical substrate
subserving tactile and proprioceptive limb placing --that is deeply disturbed after HLS (Fox, unpublished

data)-- coincide with a dense subfield of large pyramidal neurons in the deeper part of layer V (De Ryck et
al., 1992). In our experiments, layer V showed the most pronounced reduction of GABA-IR cells.

In short, as a result of the selective and differential effects of HLS on weight and non-weight bearing
muscles, corticospinal fibers would influence motoneuronal pools with either a significant number of
abnormal axon terminals innervating the atrophic antigravity muscles or with normal axon terminals
innervating non-weight bearing muscles having minimal or no "alterations. As a consequence, disturbances
in the afferent signaling and feedback information from intramuscular receptors (particularly muscle
spindles) to the cerebral cortex would trigger an imbalance m the reflex organization of these synergetic
muscle groups. In turn, pyramidal tract neurons processing altered sensory information would respond with
changes in the rates of discharge that are modulated by GABAergic neurons.

The enlphasis put on muscle spindles over other receptor types as responsible for the changes has a reason,
ahhough admittedly speculative. Electrophysiological studies of the rat somatosensory cortex suggest an
overlap (co-extension) of sensory and motor areas ("sensorimotor amalgam"), particularly at the level of the
hindlimb representation where layer V contains large pyramidal cells that extend over, without interruption,
from the motor cortex (Hall and Lindholm, 1974). This type of cortical organization would seem to lend
support to the hypothesis first proposed by Phillips (1969) that information from muscle spindles to the
cerebral cortex is relayed through an oligosynaptic transcortical spindle circuit for proprioceptive signals
whosc efferent limb is the corlicomotoneuronal projection (see Hummelsheim and Wiesendanger, 1985, for
discussion). Several subsequent studies have provided more evidence in favor of this hypothesis (see
Landgren and Silfvenius, 1969, 1971; Mclntyre, 1974; Wiesendanger and Miles, 1982; Matthews, 1991).
Whethcr the decrease in GABA immunoreactivity is due to alterations in its synthetic activity or depletion
due to increased release is a matter of speculation that will require additional studies (e.g., in situ
hybridization). Furthermore, electrophysiological recordings will be necessary to assess patterns of activity
and receptive field size of cortical neurons influenced by GABA-mediated inhibition under the same
conditions. Since the changes we have described are presumably transient (normal gait is recovered after

several wceks-Fox et al., 1993,1994) it would be important to investigate changes in GABA-IR during the
rec_wery process, and to assess whether these alterations may become irreversible given a sufficiently long
period of hindlimb unloading.

Changes in GABA-IR were previously reported undcr conditions of sensory deprivation by surgical means.
For example, Warren et al. (1989) reported a 16% decrease of glutamic acid decarboxylase (GAD)
immunoreactive cells in layer IV of the rat hindlimb somatosensory cortex 2 weeks after transection of the
sciatic nerve. In experiments conducted in monkey visual cortex after 2-3 weeks of eye enucleation, Hendly

and Jones (1986) found a 45% reduction of GABA-IR cells in layer IV. In the same region, these
investigators also showed a 36% decrease of GABA-IR cells 11 weeks after eyelid suture.

Unlike surgical deafferentation, in HLS the afferent input is n_t interrupted but rather significantly disrupted
by non-invasive unloading of weight-bearing muscles. Our results suggest that non-invasive manipulations
of the neuromuscular system, e.g., HLS or SF, can have significant effects on cortical circuitry. Other lines

of work based on non-invasive procedures support this possibility (see for example, Jenkins et aL, 1990;
Mcrzenich et al., 1990; Sanes et al., 1992). Since the central nervous system must constantly adjust
movements in response to altered environmental conditions, we believe that studies in intact animals should

be pursued to help clarify the mechanisms c_f cortical plasticity and adaptation under natural conditions.



monont,clcaled myoblaststo appearafter muscle injury (Snow, 1977;Nichols and Shafiq, 1979).We
belicvethat theextensivenecrosis,with the possibleoverlappingeffectsof thedenervation-reinnervation
process,are the triggering factors for myofiber regeneration.In addition,the presenceof innervationon
regeneratingmyofiberssuggestsa processof remodelingof axonterminals.Axonal regenerationexpressed
by thevisualizationof small axonterminals(sprouting)wasalsoseenonsomenecroticfibers.

The presenceof microtubulesand neurofilamentsfound in someaxonterminalsalmost totally devoidof
synapticvesiclesis "alsointriguing. It seemsreasonableto speculatethatsuchappearancemight beanother
indication of axonal remodeling. Such remodelingmay be related to variations in the metabolismof
motoneuronsthat trigger a reversalfrom a "transmitting" (stable)to a "growing" (plastic) state(Watson,
1976;Gordon, 1983). It hasbeenshown that microtubules predominateduring developmentand that
duringtheregcnerativeresponseof motoneuronsthereis an increasein theratioof tubulin to neurofilament
whichexpressesarecapitulationof themoreplasticstatesthattakeplaceduringdevelopment(Hoffmanand
Lasck, 1980,Lasek,1981).

The alterationsof the neuromuscularjunctions describedin this report seemto suggesta processof
denervationandremodelingduringspaceflight,thatis to say, aprocesslimited to the "efferent"component
of muscle innervation. Pronouncedmyofiber atrophy of antigravity muscles accompaniedby severe
alterationsin asignificantnumberof motorunits havealsobeenpreviouslyreportedin HLS (D'Amelio et

al., 1987: sec Edgerton and Roy for review, 1994).These findings, however, only represent a fragmentary
view of the response of the neuromuscular system to spaceflight or HLS. Thus, we believed that further
research in this area would profit from the development of a more "systemic" approach that would address
questions such as, for example, what are the "functional" and/or morphological alterations of the "afferent"
component of muscle due to the extensive lesions of the myofibers, and what are the effccts on areas of the

cerebral cortex related to inputs from muscle receptors. A natural result of this "systemic" approach would
be a more thorough understanding of the adaptive capabilities of the organism to altered gravitational
conditions. We thought then appropriate, as a following step, to initiate correlative studies on the most
plastic structure of the central nervous system, the cerebral cortex, in animals subjected to "simulated"
microgravity (HLS).

Consequences of limb unloading at the level of the cerebral cortex after spaceflight or HLS have not
previously been addressed. Several lines of evidence lead us to suggest that the cortical changes reported

here --reduction of GABA-IR cells and terminals in layer Va and Vb of the rat hindlimb somatosensory
cortex-- result from altered proprioceptive inputs from hindlimb muscle receptors with the possible
participation of joint receptors and tendon organs. First, despite the changes described by us and others in
muscle fibers and neuromuscular junctions, no morphological changes in muscle spindles or other sensory
structures have been revealed by either light or electron microscopic observations. It is therefore likely that
after HLS or SF sensory receptors continue to convey signals to the cerebral cortex from "slow" weight
bearing muscles (e.g. soleus, adductor longus), as well as from the predominantly "fast" non-weight
beating muscles (e.g., tibialis anterior) of the hind limbs.

Second, since receptors of the affected "slow" extensors (e.g., soleus) and the relatively unaffected "fast"
extensors (e.g., lateral and medial gastrocnemius) and "fast" flexors (e.g., tibialis anterior) apparently
remain operative following HLS or SF, a mismatch of afferent messages from these muscles to the cerebral
cortex should be expec,ed. Since in normal conditions stretching of the antigravity soleus muscle evokes
heterogenic retlexes in lateral and medial gastrocnemius and tibialis anterior (Nichols, 1989; see also Cope

et al., 1994), an imbalance in the reflex responses of these synergetic muscles is most likely responsible for
the disruption of gait previously demonstrated by us following HLS and SF (Fox et al., 1993,1994). That

such an imbalance can lead to changes in the cerebral cortex has been demonstrated by Sanes et al. (1992).
These investigators have suggested that sensory inputs from muscle receptors are used to adjust the neural
circuits related to the specific output functions of the motor cortex and that a mismatch between cortical

outputs and sensory inputs during active limb movements (e.g., during walking) can lead to the
reorganization of thc cortical motor outputs. Such goal-directed reorganization would be designed to
optimize function (e.g., walking) under the conditions of altered inpuLs from hindlimb muscles.

Thus, the modification of sensory inputs to the central nervous system due to altered functioning of

hindlimb musclcs, ahmg with the rcquirements for rcprogramming of motor outputs to compensate for the
changes in structure and function of those same muscles, could lead to plastic modifications of thc circuitly
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Abstract

The present report describes a desktop' computer-based method for the quantitative assessment of the area occupied by
immunoreactive terminals in close apposition to nerve cells in relation to the perimeter of the cell soma. This method is based on

Fast Fourier Transform (FFT) routines incorporated in NIH-Image public domain software. Pyramidal cells of layer V of the

somatosensory cortex outlined by GABA immunolabeled terminals were chosen for our analysis. A Leitz Diaplan light

microscope was employed for the visualization of the sections. A Sierra Scientific Model 4030 CCD camera was used to capture

the images into a Macintosh Centris 650 computer. After preprocessing, filtering was performed on the power spectrum in the

frequency domain produced by the FFT operation. An inverse FFT with filter procedure was employed to restore the images to

the spatial domain. Pasting of the original image to the transformed one using a Boolean logic operation called 'AND'ing

produced an image with the terminals enhanced. This procedure allowed the creation of a binary image using a well-defined

threshold of 128. Thus, the terminal area appears in black against a white background. This methodology provides an objective

means of measurement of area by counting the total number of pixels occupied by immunoreactive terminals in lieht microscopic

sections in which the difficulties of labeling intensity, size, shape and numerical density of terminals are avoided. _ 1997 Else_'ierScience B.V.

Keywords." Image analysis; FFT; NIH-image; Quantitative immunocvtochemJstrv; GABA; Somatosensory cortex: Light mi-
croscopy " -

1. Introduction

The quantitative assessment of antibody immunocy-

tochemistry in light microscopic sections presents well

known difficulties. These include non linearity of opti-

cal density measurements of immunoreactive products,

uneven lighting and subjective evaluation of staining

intensity. In the course of our research (D'Amelio eta].,

1996) we explored the possibility of decreasing subjec-

tive bias by using a computer-based image analysis

technique to measure the area (in pixels) occupied by

"Corresponding author. Tel.: +1 415 6044817; fax: +1 415
6041Y_.16:e-ma_l: fdamelio_ma .arcnasa.gov

immunoreactive terminals in close apposition to nerve

cells. Other approaches with similar purposes have

previously been reported (Vincent et at., 1994).

2. Material and methods

2. I. Animals, perfusion fixation and sectioning

Sprague-Dawley rats (200-250 g) were employed, for

this study. The animals were deeply anesthetized with

Metot'hane :_ and immedialely perf'used via the heart

v, ith 50 ml of 0.9% saline, followed by 500 ml of a

fixative made tip of 1'),/o parafornmldt_hyde and 2"_,>



^

,..t_. ,._ u el aJ , in, .... I o/ _ ....... ;.... Me¢hodz O()O-(1997)(KIO2(KKI .................

glutaraldehyde in 0.1 M phosphate buffer, pH 7.4.
The brains were removed the same day, immersed in

fresh fixative and stored at 4°C. The right hemisphere
was coronally blocked between Bregma - 1.8mm and

Bregma -3.6ram, where the somatosensory represen-
tation of the hindlimb is conspicuous and associated

with the presence of the rostral hippocampus (Paxinos

and Watson. 1986). Coronal sections 40_m thick were

cut on a Vibratome ® and collected in TBS (0.05 M
Tris buffer, 0.9% saline, pH 7.6).

2.2. hmnunocytochemistry

The tissue sections, both experimental and control,

were processed together in the same solutions to mini-
mize labeling differences.

Floating sections were incubated for 5-10 rain at

room temperature (RT) with 3% hydrogen peroxide in

10% methanol in TBS and subsequently rinsed four
times in TBS x 30 rain (RT). The sections were then

immersed in GABA antiserum (Chemicon, Cat. #

ABI31) or control serum (preimmune rabbit serum)
diluted at 1:1000 in TBS for 48-72 h at 4°C, with
orbital agitation. Then, they were rinsed four times in

TBS x 30 rain (RT) and incubated for 60 rain (RT) in
swine anti-rabbit IgG diluted 1:50 in TBS. The sec-

tions were rinsed four more times in TBS x 30 rain

(RT) and then incubated for 60 min (RT) with rabbit

peroxidase-antiperoxidase complex (Sigma) diluted

1:200 in TBS. To develop reaction product the sec-
tions were immersed in 12.5 mg diaminobenzidine te-

trahydrochloride (DAB) in 50 ml TBS + 5 _1 30%
hydrogen peroxide for 5-8 rain. Finally, the sections

were rinsed in TBS, two changes × 10 rain (RT),
mounted on gelatin coated slides, air-dried and cover-
sliped with Permount ®.

2.3. Image analysis equipment

2.3.1. Ltght microscope

Sections were observed under a light microscope

(Leitz Diaplan) equipped with a I00 W halogen lamp
and with a Fluotar 100/1.32 oil immersion objective.

Two filters (a Kodak Polycontrast photographic filter

# I_'2 and a Wratten gelatin filter # 15, deep yellow)
wereplaced in the microscope light path to enhance

contrast and increase accuracy of focus.

2.3.2. Image analysis system

Images were captured using a Sierra Scientific (Sun-
nyvale, CA) Model 4030 CCD camera. This is a black

and white video-rate camera with 640 horizontal scan

lines and 492 vertical scan lines. It was mounted on

the microscope body connecled to a Scion Technol-

ogy (Friederick, MD) LG-3 frame giabbcr board m-
stalled in a Nubus slot in a Macintosl: Centris 650

computer (Cupertino, CA). The LG-3 board samples
the analog video signals from the camera into a

640 x 480 grid of pixels with a resolution of eight
bits. The brightness level of each pixel ranges from 0

to 25._._6gray levels as it is converted into the digital

image. The public domain software, NIH-Image v.

1.59 (written by Wayne Rasband, NIMH, Bethesda,

and updated frequently), was used to capture images
and to analyze the GABA-IR terminals. This software

is available electronically from the Internet by anony-

mous FTP from zipPy.nih.nimh.gov/pub/nih-image/
nih-image or from the NIH's Web site
(http://rsb.in fo.nih.gov/nih-image).

2.4. Image processing steps

2.4.1. hnage capture

Our analysis was focused on GABA-immunoreac_

rive (GABA-IR) terminals closely apposed to pyrami-
dal cells of layer V of the somatosensory cortex.

Pyramidal neurons were identified by round or oval
contours and a distinct apical dendrite. No GABA-IR
product was present in the soma of these ceils.

Once a pyramidal cell was selected to be analyzed,
the light source intensity for the microscope and the

video control menu (gain and offset) under NIH-Im-

age were adjusted until the peak intensity of the gray
level displayed from the live histogram was close to

the midpoint of the range between 0 and 255. Then,
the microscope stage was moved off the tissue without

changing any video control settings, and a blank field

was captured. The latter was stored in the temporary
memory of the system. Subsequent cell images, under
software control, were captured 16 times and then

were averaged to reduce random electronic noise orig-
inated from various sources including the camera's

CCD sensors, frame grabber, and monitor (Inoue,
1986). The software automatically subtracted the

blank field from the averaged images before the final

images were captured by the frame grabber to further

improve the signal to noise ratio. Thus, GABA-IR

terminals in the captured images appeared to stand
out better and random noise was reduced. To maxi-

mize use of computer storage space, the final captured

images were cropped to the size of each pyramidal

cell, usually at least 260 x 300 (horizontal x vertical)

pixels in size, and saved. Further image processing
and analysis was performed on those cropped images.

Neurons from both control and experimental sections

were captured without changing light and video set-
tings.

A light microscopic microphotograph under oil im-

mersion depicts pyramidal cells outlined by GABA-IR

terminals (Fig IA). Fig. IB shox_s the captured ;illd
cropped digital image of one cell.

Z5"5
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Fig. 1. (A) Micr¢ of pyramidal cells IPC) omlined by IR terminals (arrowheads) in layer V of the hindiimb representation of

the rat sematosensory cortex Magnification is 600× {B) Cropped digital square image of a pyramidal cell soma ¢PC) outlined by GABA-IR

termina!s (t) captured from a rrucroscopic slide xiex_ed under 100 × oil immersion objective; n, nucleolus

2.4.2. Preprocessing of the digital image
Under the Process menu in the software, a type of

neighborhood ranking operation--median filter with a

3 x 3 pixel matrix--was used to reduce electronic noise

in the captured image. This filter sorts the nine pixels in

each 3 x 3 neighboring region and replaces each center

pi×el from the source image by the median value of its

eight neighbors. The effect is to remove all pixels that

are darker or brighter than their neighbors, and thus

remove noise. This is a linear filter operation in which

no information is lost from the ori_nal image (Russ,

1994). Following median filtering, a sharpening process

(also under the Process menu) to enhance the

boundaries of terminals was applied.

Fig. 2 shows a flow chart of the image processing

steps.

2.5. Image analysis steps ,, ,__--- r, _,__'_- -'F"

2.5. I. Fast_urier _T)

Fourier Transform (FFT) routines were employed to

analyze immunoreactive terminals outlining pyramidal

cells in layer V of the hindlimb representation of the

somatosensory cortex. The algorithm used in NIH-Im-

age v.1.59 and subsequent versions uses the computa-

tionally advantageous Fast Hartley Transform or FHT,

(Bracewell, 1986), a close relative of the well known

Fast Fourier Transform. The FHT was originally im-

plemented by Ario Reeves f1990)in his ",pin-,_ff version

of Image FFT. ]-hc_c l_utillc.,, v,clc wriucn in assembly'

language specific for the 6801)0 processor for v.l.2S of

NIH-Image. They have now been adapted to current

chip technolog'y in v.I.59.

2.5.2. FFT macros

FFT macros are invoked initially' using 'Load

macros' under the Special menu. A square area, com-

prised of 128 x 128 or 256 x 256 pixets (the size of this

selected area must be a power of two. a requirement of

the FFT), was selected by applying one of the proce-

dures in the FFT macros. The FFT s_as performed on

a square area of the image to obtain a power spectrum

image in the frequency domain (Fig. 3). Different spa-

tial signals from the original image were represented as

different frequencies at various distances from the cen-

ter of the power spectrum, with concentration of lowest

frequencies closer to the center, and the higher frequen-

cies further away from the center.

2.5.3. Inverse FFT

A software filter (under FFT macros in the Special

menu), size 80% (retaining 80% of the original frequen-

cies), and a transition zone, with a width of 20%, was

created and applied to all cells for analysis (screen

display in Fig. 4). When an inverse FFT with filter

procedure (under FFT macros) was employed, the in-

formation in the frequency domain is transformed back

to the spatial domain (screen display in Figs. 4 and 5).

Thi_, ,_per-ation restores the original image x_ith the high

fre,ltJcncics _uppressed, m;lki::g the lmn-'.c of the termi-

nal :',tea more promincnl.
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2.5.4. Boolean 'AND'ing and thresholding

In this step the original image was pasted to the
transformed image using the Boolean logic operation

'AND' (under 'Paste control' option in Windows

menu), so that the terminals in focus were clearly

delineated from the background (screen display in Figs.
6 and 7). If a cell was larger than the 256 × 256 area, a

composite of squares was made, using Boolean logic
'OR' under 'Paste control' to match the squares. As to

the threshold, instead of having to adjust it according

to each individual image, in this application the

threshold end point was set at 128 for all images. This
end point consistently selected all pixels of the termi-

nals, whereas in settings beyond 128 many pixels would
remain unselected. A binary image was then created

that revealed the terminal area in black against a white

Image Processing Steps

I Adjust microscope Ilight intensity

I

I Adjust CCD camera's gain and ]offset from NIH-Image software

I

Capture a blank [field and save

Capture 16 framesand average

I Subtract blank field Ifrom the averaged image

!

Crop the image down to ]the neuron size and save

1

Use median filter I
to remove noise I

I
! 1to enhance edges

Fig 2. Flow ,.'hart c,f the image proccw, mg ,_tcps.

Fig. 3. Power spectrum of a pyramidal cell produced by FFT of a

square image in the frequency domain.

background (Fig. 8).

2.5.5. Measurements

The terminal area was measured on binary images
and the perimeter of the cell bodies was estimated on

gray scale images. The PENC1L tool in the software

was employed to separate the clearly delineated termi-

nals in close apposition to the pyramidal cell from those

axon terminals that were not apposed (Fig. 8). To
measure the area of the terminal, the WAND tool, an

automatic measuring tool (highlighted in Tools window

in Fig. 8), was employed to count the number of pixels
in the black zone, when the area measurement option in

the software was selected. With the shift key depressed,

individual measurements were added together. The

perimeter of the pyramidal cell body was estimated by
using the POLYGON tool to trace the outline of the

soma (Fig. 9). The dendritic gaps (apical and basal)
were subtracted from the perimeter measurement.

A flow chart of the image analysis steps is shown in

Fig. 10.

2.6. Statistical analysis

All measurements were exported directly into Excel

(Microsoft, Redmond, WA) for easy record keeping,

and for easy computation of the ratio of the area of the

terminal to the perimeter of the soma. The ratios from

all the cells analyzed were then exported into SuperA- "3,_pec-

NOVA (Abacus, Berkeley, CA)and a one-'lacto"-'"_/_._
ANOVA was used to evaluate the effect of _'_ferent

expelimental condilions c,_,, the area occupicd by A

GAIL\-IR terminals :tpposcd Io p?,'r:trlaid:tl cell,;
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l_idJl (Iplion$ Process Analyze Special Stacks Windows

Fig. 4. Screen display of NIH-image software. Upper left corner: square image of a pyramidal cell; upper right corner: filter [size: 80% in black;

20% transition width (arrowheads)]; lower left corner: pyramidal cell soma outlined bv. GABA-IR terminals after inverse FFT with filter; lower

right corner: resulting image from Boolean 'AND' ing the two images from the left side of the screen.

3. Example of data analysis

As part of an ongoing project in our laboratory, the

procedure that has been described was employed to
analyze the area occupied by GABA-immunoreactive

terminals apposed to pyramidal cells in layer V of the

Fig. 5. Resulting image from applying., inverse FI:T with filter (size:

80%, transition width 2(YYo) restoring 1he power spectrum image t_

the spatial domain PC, pyramidal cell: I, _crl]_inals; n. nucleolus

hindlimb representation of the rat somatosensory cor-

tex following 14-day exposures to chronic hypergravity
(3 G) produced%y centrifugation. A significant reduc-

tion in the GABA-immunolabeled terminal area was

found with respect to the control group. A total of 100

pyramidal cells, each from the control group and from

the rats exposed to hypergravity were analyzed. The

ratio of the area of GABA-IR terminals to perimeter of

pyramidal cell soma was 8.122 + 0.259 (mean + S.E.M,)

for the control and 5.008 + 0.206 for the hypergravity

group (P < 0.0001). These results demonstrate that the

method is effective in determining quantitative differ-

ences in immunoreactive terminals (Fig. 11).

4. Discussion

The FFT applied to two-dimensional images is useful

for various purposes, such as removing noise for image

restoration, finding the periodicity in biological speci-

mens, or for image enhancement to remove motion

blur. For example, Russ (1994) has pointed out that a

typical image analyst often avoids analysis in the fre-

quency domain because of difficulties in relating the
questions to be asked to the problems encountered in

image analysis procedures. But with modern day soft-

ware such as NIH-Image 'one &,cs n_ need to deal

deeply with the malhen_atics _o atri_c at a practical
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Piocess Analyze Special Stacks ll.liiidows

Filter,',

H ......

Paste Conlrol

Transfer Mode [ fldd

[ ,,-]
Scale Math []

• Live Paste El ['illiil'_l'il

Copy of 95-5R, ptdr6,botto ]

_,;, _,'_ '-¢. V :'. ¢,:,..._i, .._,_"..:l-_u
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. ..:.- .> _.. .':'2, ° .. ":_,._:ii::,1 ." ":'1

Fig. 6. Screen display showing paste control window with Boolean 'AND' selected• The rest of the screen is similar to Fig. 4.

working knowledge of these techniques' (Russ, 19942.
An important property of FFT is that it can be re-

versed. The inverse FFT applied to the 'forward' FFT,

Fig. 7. The resulting image from Boolean 'AND'ing ,he square image

(Fig. IB) to the in,,erse FEll" imaFe (Fig. 51 GAItA-IR _enniaals are

clearly seen in the foreground PC, p)ramidal cell v_ma: L [er_mnals

i.e,_the power spectrum of an image, restores the origi-^
nal image. Filtering in the frequency domain before

applying the inverse FFT, such as _e did with the

creation of the filter in the image analysis steps, re-

moves most of the noise@higher frequencies. The

,j
/k
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Fig. 9. Gray scale image of pyramidal cell soma (PC) with perimeter

outlined employing the POLYGON tool (highlighted in Tools win-

dow); t, :erminals.

analysis of images in the frequency domain (by applica-
tion of FFT), was more efficient than processing in the
spatial domain. The latter would have required many
different steps of filtering and image mathematics with
less satisfactory results. Using the inverse FFT with
filtering, and then using the Boolean logic operation,
'AND'ing from the original image to the transformed

image is essentially adding the signals together, thus
bringing out the terminals into the focal plane and
clearly differentiating them from the background. Fur-
thermore, there is an definite endpoint of threshold at
128 that avoids subjective manipulation of threshold
that could affect the results. Thresholding is a common
step applied to the digital image before measuring. The
traditional approach is to define a range of brightness
values in the original image so that all the pixels within
this range are selected as belonging to the foreground
and measured, while all the other pixels belonging to
the background are rejected. Since for practical reasons
a large number of cells are analyzed over a period of
several days, image capture from individual sections is
often performed on different days. Thus, changes in
lighting conditions may occur. However, after the FFT
procedure is applied, a uniform threshold set at 128 can
be employed for each cell from any section regardless
of variations in lighting conditions.

We believe that the procedure described in the
present report is useful since it increases the accuracy of
the analysis by decreasing subjective interpretation and
avoiding the difficulties and shortcomings presented by,
for example, the quantitative evaluation of <_ptical den-
sity in samples stained with immunocytochemical meth-
ods. These include variations in labeling imenslty, the

need for a strict control of antibody concentration and

times of incubation, the possibility of tissue altera.tions
such as the compression of labeled profiles into smaller

areas that may result in erroneous determinations of

density and the use of standards containing a known

Image Analysis Steps

Create a filter ]

(size 80%, transition 20%) I
I

I

Make a duplicate copy ofl
the original image I

I Make square images i

[ Make composite image Iusing Paste OR to match

I
I

on square images IFFT
I

I
i Inverse FFT with filter(transformed image)

I

Paste transformed image I
onto the duplicate image I

!

i Paste AND the original image ito the transformed image

I

I Set threshold at 128 forthe resulting image

I
Use WAND tool and with the SHIFT key
down, select the GABA-IR terminals to

compute the total area

Deselect threshold to convert back to

the gray scale image. Use POLYGON
tool to trace the outline of the soma

Fig IO. I:h,w chari of ;he Image ;_rl,:l_,15 ,4cps
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Fig. l l. GABA-immunoreactivity expressed as the ratio of termina

area to perimeter of the pyramidal cell body for animals in the

control and centrifuged groups.

lated to proprioceptive inputs from muscles. In this case

we believe that, for example, the concentration of the

antigen, important for the quantitative assessment of

optical density, is less significant. More relevant to our

purposes, if differences in GABA immunoreactivity are

found between control and experimental samples, is to

search for alterations in the synthetic activity of the
transmitter.

Finally, we wish to emphasize some of the advan-

tages of our procedure. They include the use of a

common desktop computer, relatively inexpensive
equipment, readily available free software to attain

quantitative analysis, a standard procedure that can be

easily followed, and minimal training requirements.

(Expert help is also available from the NIH-Image,

e-mail group located in soils.umm.ed_j. The methods
described in this paper should well serve the purposes

of others attempting to answer scientific questions of a
similar nature.

amount of antigen, since differences in optical density
may not reflect changes in the concentration of the

antigen (Mize, 1989, 1994). These drawbacks are fur-

ther confounded by the possibility of uneven lighting

during image capturing and monitor display that, with

our procedure, are less important variables. The same

can be said of labeling intensity of immunoreactive

products. Although all steps of the immunocytochemi-

cal staining for both control and experimental sections

were performed in the same solutions to avoid varia-

tions in labeling intensity, our procedure allows for

such variations to occur without significantly impacting

the results. As many researchers have learned, optical

density measurements on immunoperoxidase products

by means of light microscopy requires a sophisticated

image analysis system. To perform those measurements,

gray scale images have to be converted into binary

images through thresholding. Thresholding that would

be optimal for one area, would invariably bc unsatisfac-

tory for other areas. Thus, some of the needed features

might be rejected or many of the background pixels

might be included leading to erroneous result.

In the final analysis, the methodology to be employed

should depend upon the questions to be answered. In

our research we are interested in determining differ-

ences in the area occupied by GABA immunolabeled

terminals apposed to pyramidal cells in regions of the

somatosensory cortex (e.g.shindlimb representation re-
/x
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Quantitative Changes of
GABA-Immunoreactive Cells in the Hindlimb

Representation of the Rat Somatosensory
Cortex After 14-Day Hindlimb Unloading by
Tail Suspension

F. D'Amelio, R.A. Fox, L.C. Wu, and N.G. Daunton

San Jose State University Foundation, San Jose, California (F.D'A., L.C.W.), San Jose State University, San
Jose, California (R.A.F.), and NASA-Ames Research Center, Moffett Field, California (N.G.D.)

The present study was aimed at evaluating quantita-

tively 7-aminobutyric acid (GABA) immunoreactiv-

ity in the hindlimb representation of the rat soma-

tosensory cortex after 14 days of hindlimb unloading

by tail suspension. A reduction in the number of

GABA-immunoreactive cells with respect to the con-

trol animals was observed in layer Va and Vb.

GABA-containing terminals were also reduced in the

same layers, particularly those terminals surround-

ing the soma and apical dendrites of pyramidal cells

in layer Vb. On the basis of previous morphological

and behavioral studies of the neuromuscular system

of hindlimb-suspended animals, it is suggested that

the unloading due to hindlimb suspension alters af-

ferent signaling and feedback information from in-

tramuscular receptors to the cerebral cortex due to

modifications in the reflex organization of hindlimb

muscle groups. We propose that the reduction in im-

munoreactivity of local circuit GABAergic neurons
and terminals is an expression of changes in their

modulatory activity to compensate for the alterations

in the afferent information. © 1996 Wiley-Liss, Inc.

Key words: immunocytochemistry, cerebral cortex,

muscle, NIH-Image

INTRODUCTION

Hindlimb unloading by tail suspension (HLS) is a

non-invasive procedure that simulates some of the effects

of weightlessness on antigravity muscles (e.g., soleus

atrophy) observed following spaceflight (SF) (Ilyin and

Oganov, 1989; Thomason and Booth, 1990; Edgerton

and Roy, 1994, for reviews). Although the consequences

of unloading have been well-studied in the muscles, little

attention has been paid to the possible effects of hindlimb

unloading on those areas of the central nervous system
related to sensory inputs from muscles.

The primary concern of this experiment was to de-

termine whether _/-aminobutyric acid (GABA) immuno-

reactivity (GABA-IR) of local circuit cortical neurons

could be altered as a result of a non-invasive procedure

such as HLS. Our assumption--based on our current

behavioral and morphological studies (D'Amelio et al.,
1987; D'Amelio and Daunton, 1992; Fox et al., 1993,

1994)--was that muscle atrophy produced by HLS could

modify sensory inputs arising from muscle receptors to
the cerebral cortex.

We have focused the present report on the behavior

of GABAergic neurons since numerous lines of research
have demonstrated modifications in the level of

GABA-IR or glutamic acid decarboxylase (GAD) immu-

noreactivity in cortical interneurons when sensory' activ-

ity is altered by surgical manipulation (Hendry and
Jones, 1986; Warren et al., 1989; Akhtar and Land,

1991; see also Jones, 1990).

MATERIALS AND METHODS

Animals

Six Sprague-Dawley rats (200-250 g) were em-
ployed for this study. Three served as controls and three

were suspended (HLS) by the tail for 14 days.

Suspension Procedure

The suspension procedure (Wronski and Holton,

1987) consisted of the following steps: the tail was

cleaned with gauze previously soaked in 70% ethanol,

then sprayed with tincture of benzoin for protection

Received September 21, 1995; revised February' 7, 1996: accepted
February 14, 1996.

Address reprint requests to Dr. Fernando D'Amelio, NASA-Ames
Research Center, Mail Stop 261-3. Moffett Field, California 94035.

© 1996 Wiley-Liss, Inc.



against adhesive tape irritation, and allowed to dry. A

strip of orthopedic tape was attached to a plastic suspen-

sion bar and applied to the lateral sides of the tail. The

tape was then secured by wrapping a strip of stockette

around the tail. The plastic suspension bar was then at-

tached to a pulley system mounted on the top of an

acrylic housing unit. In this manner the unloading of the
hindlimbs was achieved while the forelimbs were used

for locomotion and unimpeded access to food and water.

Body weight was recorded daily. Control rats were

housed individually in similar cages located in the same
room but had no attachments to the tail. The room was

maintained at 24°C with a 12-hr light/dark cycle.

Fixation and Sectioning

After 14 days of tail suspension the animals and

their controls were deeply anesthetized with Metophane

and immediately perfused via the heart with 50 ml 0.9%

saline, followed by 500 ml of a fixative made up of 1%

paraformaldehyde and 2% glutaraldehyde in 0.1 M phos-

phate buffer, pH 7.4. The brains were removed the same

day, immersed in fresh fixative, and stored at 4°C.

The right hemisphere was coronally blocked be-

tween Bregma - 1.8 mm and Bregma -3.6 mm, where

the somatosensory representation of the hindlimb is con-

spicuous and associated with the presence of the rostral

hippocampus (Paxinos and Watson, 1986). At this level

the more rostrally located forelimb representation is no

longer present (rostral to Bregma -1.8 the somatosen-

sory cortex contains both hindlimb and the laterally ad-

jacent forelimb representations. The hippocampus is not
visible). Coronal sections 40 _m thick were cut on a

Vibratome and collected in TBS (0.05 M Tris buffer-

0.9% saline, pH 7.6). Twenty serial sections per animal

were used for the staining procedures; 15 were stained
for immunocytochemistry, and 5 were Nissl stained with

cresyl violet to identify the cytoarchitectonic layers of
the hindlimb representation.

GABA Immunocytochemistry

Floating sections were first incubated for 5-10 min

at room temperature (RT) with 3% hydrogen peroxide in

10% methanol in TBS and subsequently rinsed 4 times in

TBS x 30 min (RT). The sections were then immersed

in GABA antiserum (Chemicon, cat. no. ABI31) or con-

trol serum (preimmune rabbit serum) diluted at 1:1,000

in TBS for 48-72 hr at 4°C, with orbital agitation. Then

they were rinsed 4 times in TBS x 30 min (RT) and

incubated for 60 min (RT) in swine anti-rabbit IgG di-
luted 1:50 in TBS. The sections were rinsed 4 more times

in TBS x 30 min (RT) and then incubated for 60 min

(RT) with rabbit peroxidase-antiperoxidase complex

(Sigma) diluted 1:200 in TBS. To develop reaction prod-

uct the sections were immersed in 12.5 mg diaminoben-
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zidine tetrahydrochloride in 50 ml TBS + 5 td 30%

hydrogen peroxide for 5-8 min. Finally, they were

rinsed in TBS, 2 changes x 10 min (RT), mounted on

gelatin coated slides, air-dried, and coverslipped with
Permount.

The sections from pairs of experimental and control

animals were processed together in the same solutions

for consistent immunostaining. For identification pur-

poses, the hemisphere of the control rat was marked with
a small hole at the level of the striatum. Sections of each

suspended and control pair were placed on the same glass

slide for counting of GABA-IR cells.

Methodology for Quantitative Analysis

A Bausch & Lomb inverted microscope equipped

with a 25 x objective was employed to complete the first

steps of the analysis. The microscope was set on a table
to project the image of the slides at 58 x magnification.

The hindlimb somatosensory cortex was identified

in Nissl-stained slides by the prominent aggregation of

granular cells in layer IV. The boundaries of the hind-

limb representation were drawn on a piece of white pa-
per. The projected image of the sections stained with

GABA antiserum was superimposed on the drawing, and

GABA-IR cells intensely or moderately stained were

marked on the paper. Blood vessels as well as meningeal
foldings served as reference marks for each section. The

marking of the cells slightly exceeded the lateral and

medial boundaries of the hindlimb representation. Sub-

sequently, the coverslips of the anti-GABA stained slides

were removed by soaking in xylene, and the sections

were Nissl-stained with cresyl violet and remounted. The

Nissl staining of the slides in which the marking of the

GABA-IR cells was previously made gave us more con-

fidence in tracing the boundaries of the area and demar-

cating the cortical laminae based on the prominent gran-

ular aggregates of layer IV. The projected image of these

sections was drawn on a translucent sheet of paper. The

drawing included the boundaries of the hindlimb repre-
sentation, the reference marks, and the dividing lines of

six cortical layers identified as layers I, II/III, IV, Va,
Vb, and VI (see Zilles and Wree, 1985). This drawing

was then overlaid on the paper that had the markings of
GABA-IR cells. The boundaries of the hindlimb cortex

were then corrected and GABA-IR cells were counted in

each layer on the translucent paper (Figs. 1, 2).
The image of each layer on this translucent sheet

was captured into a Macintosh Centris 650 computer
using a Sierra Scientific Model MS4030 CCD tube cam-
era that had a macro Nikon/Nikor 55 lens and a Scion

Technology LG-3 frame grabber board in the Nubus slot

of the computer. Version 1.54 of the public domain NIH-

Image image analysis software (written by Wayne Ras-
band at the U.S. National Institutes of Health) was used
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Fig. 1. Schematic drawing of method used for quantitative analysis. See text for details.

for image acquisition and for area measurement of each

of the six layers. (The software is available electronically

via Internet by anonymous ftp from zippy.nimh.nih.gov

or from Library 9, the MacApp forum on CompuServe

and on floppy disk from NTIS, 5285 Port Royal Rd.,

Springfield, VA 22161, Part number PB93-504868.)

An image of standard square inches etched in the

copy stand was also captured and then used to compute

the correction factor for the distortion of the aspect ratio

introduced by the camera lens and the computer monitor.

Quantitative measurements of the cortical layers were

done blind by one of us (L.C.W.). The digitized images

were magnified at 2 x, and a sharpening filter was used

prior to measuring. Measurements are based on four to

eight GABA/Nissl-stained slides for each of the three

rats in each group. The measurement data and the num-

ber of GABA-IR cells for each layer were entered into

Microsoft Excel v.4.0. The frequency of GABA-IR

cells/mm 2 area in each layer for each treatment group

was then computed.

RESULTS

The number of GABA-IR cells/mm _' of the hind-

limb representation was determined for each section ly-

ing within the boundary defined by the presence of the
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Fig. 2. A: Microphotograph of a Nissl-stained coronal section through the hindlimb soma-
tosensory cortex showing the demarcation of the six layers in which counting of GABA-IR
cells was done. Note the aggregation of granular cells in layer IV. B: Same level as in A,
stained with GABA antiserum. WM, white matter• Magnification x 55.

°° ,

rostral hippocampus. A total of more than 7,600
GABA-IR cells were identified• Cell counts were based

on four sections for one rat subjected to HLS, on six

sections for one control rat, and on eight sections for the

four (two HLS and two control) remaining rats. To elim-

inate differences in staining between pairs of rats, cell
counts on sections of HLS and control rats that were

processed in the same immunostaining solutions were
expressed for HLS as a percentage of control

(HSL GABA-IR cells/mm 2)

(CONTROL GABA-IR cells/mm 2)
× 100.

GABA-IR cells were scattered in all cortical layers,

but with the highest concentration in layer IV and lower

concentrations in layers I and VI. The number of

GABA-IR cells was reduced in rats subjected to HLS.

Effects of HLS, expressed as the percentage of reduction

in GABA-IR cells, in each cortical layer is shown in
Table I. As seen in this table, the reduction in GABA-IR

cells varied among cortical layers, with significant re-

ductions occurring in layers Va and Vb.

Although quantitative assessment of GABAergic

terminals ("puncta") targeting pyramidal cell soma and

processes was not performed, it was obvious that they

were markedly reduced in number in layers Va and Vb

when compared with controls (Fig. 3).

DISCUSSION

While it is well documented that the unloading of

antigravity muscles by hindlimb suspension leads to at-

rophy, alterations of neuromuscular units, changes in

contractile properties, and the loss of coordination of

muscular contraction among different muscle groups (for

review, see Edgerton and Roy, 1994), consequences of

the unloading at the level of the cerebral cortex have not

previously been addressed. Our results indicate that un-

loading of the hindlimbs results in a significant reduction

in immunoreactivity of GABAergic cells and terminals

in layers Va and Vb of the rat hindlimb somatosensory
cortex.

Several lines of evidence lead us to suggest that the

cortical changes reported in this study result from altered

proprioceptive inputs from hindlimb muscle receptors

without neglecting the possibility of participation of joint
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TABLE i. Percentage of GABA-IR Cells in HLS Relative to Control Rats

Cortical layer

I I1/111 IV Va Vb VI

Pair A HLS/C % 108.03 93.56
Pair B HLS/C % 81.23 111.45
Pair C HLS/C % 95.72 62.61

Mean 94.99 89.2 i
SD 13.41 24.71
SEM 7.74 14.27
% Decrease 5.01 10.79

t test 0.65 0.76
P value >0.10 >0.10

116.38 65.01 87.35 113.13
87.48 75.72 81.55 64.60
57.84 61.02 64.90 47.26
87.23 67.25 77.93 75.00
29.27 7.60 11.65 34.14
16.90 4.39 6.73 19.71
12.77 32.75 22.07 25.00

0.76 7.46 3.28 1.27
>0.10 <0.01" <0.05* >0.10

*Significant difference, by one-tailed test.

receptors and tendon organs. First, although we have

previously shown pronounced myofiber atrophy of anti-

gravity muscles accompanied by severe alterations in a

significant number of motor units immediately after HLS

or SF, i.e., degeneration of axon terminals and decrease

in the number or absence of synaptic vesicles (D'Amelio

et al., 1987; D'Amelio and Daunton, 1992; for review,

see Edgerton and Roy, 1994), no morphological changes

in muscle spindles or other sensory structures have been

revealed by either light or electron microscopic observa-

tions of the same material (D'Amelio, unpublished re-

sults). It is therefore likely that after HLS or SF sensory

receptors continue to convey signals to the cerebral cor-

tex from "slow" weight-bearing muscles (e.g., soleus),

as well as from the predominantly "fast" non-weight-

bearing muscles (e.g., tibialis anterior) of the hind limbs.

Second, since receptors of the affected "slow" ex-

tensors (e.g., soleus) and the relatively unaffected

"fast" extensors (e.g., lateral and medial gastrocne-

mius) and "fast" flexors (e.g., tibialis anterior) appar-

ently remain operative following HLS or SF, a mismatch

of afferent messages from these muscles to the cerebral

cortex should be expected. Since in normal conditions
stretching of the antigravity soleus muscle evokes heter-

ogenic reflexes in lateral and medial gastrocnemius and

tibialis anterior (Nichols, 1989; see also Cope et al.,

1994), an imbalance in the reflex responses of these
synergetic muscles is most likely responsible for the dis-

ruption of gait previously demonstrated by us following
HLS and SF (Fox et al., 1993, 1994). That such an

imbalance can lead to changes in the cerebral cortex has

been demonstrated by Sanes et al. (1992). These inves-

tigators have suggested that sensory inputs from muscle

receptors are used to adjust the neural circuits related to

the specific output functions of the motor cortex and that

a mismatch between cortical outputs and sensory inputs

during active limb movements (e.g., during walking) can

lead to the reorganization of the cortical motor outputs.

Such goal-directed reorganization would be designed to

optimize function (e.g., walking) under the conditions of

altered inputs from hindlimb muscles.

Thus, the modification of sensory inputs to the cen-

tral nervous system due to altered functioning of hind-

limb muscles, along with the requirements for repro-

gramming of motor outputs to compensate for the

changes in structure and function of those same muscles,

could lead to plastic modifications of the circuitry at the
cortical level. In these modifications local circuit

GABAergic neurons of the cerebral cortex are the most

logical candidates to modulate the discharge frequency

of pyramidal cells (Jones, 1993) since: 1) the majority of
identified local circuit neurons in the cerebral cortex are

GABAergic (White, 1989); 2) GABAergic cells are

present in all layers of the mammalian cerebral cortex
(Ribak, 1978; Houser et al., 1984; White, 1989); and 3)

the main synaptic targets of all classes of GABAergic

neurons are the pyramidal cells and their processes

(White, 1989). Furthermore, experiments primarily con-

cerned with neuronal receptive fields in the somatosen-
sory cortex have shown that GABA-mediated intracorti-

cal inhibition specifies size and thresholds of receptive

fields of major neuronal subgroups (Hicks and Dykes.

1983; Dykes et ai., 1984; see also Jacobs and Donoghue.
1991). It has been shown that the cortical substrate sub-

serving tactile and proprioceptive limb placing--whi_h

is deeply disturbed after HLS (Fox, unpublished datal--
coincides with a dense subfield of large pyramidal neu-

rons in the deeper part of layer V (De Ryck et al., 1992!.

In our experiments, layer V showed the most pronoun_'c_t
reduction of GABA-IR cells.

In short, as a result of the selective and differentia,.1

effects of HLS on weight- and non-weight-bearing m_,-

cles, corticospinal fibers would influence moloneurok_._l

pools with either a significant number of abnormal axon

terminals innervating the atrophic antigravity muscles or

with normal axon terminals innervating non-weight-

bearing muscles having minimal or no alterations. As a

consequence, disturbances in the afferent signaling and
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Fig. 3. Microphotographs of hindlimb somatosensory cortex at the level of layer Vb stained
with GABA antiserum. A: Tail-suspended animal. The pyramidal cells appear almost totally

deprived of peripheral GABA-IR terminals. Note that the neuropil also shows very few
terminals (arrowhead) compared with the control in B. B: Control animal. Pyramidal cells

surrounded by GABA-containing terminals (arrow). Numerous GABA-IR terminals are also
conspicuous in the neuropil (arrowheads). PC, pyramidal cell; G, GABAergic cell. Magnifi-
cation × 800.
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feedback information from intramuscular receptors (par-

ticularly muscle spindles) to the cerebral cortex would

trigger an imbalance in the reflex organization of these
synergetic muscle groups. In turn, pyramidal tract neu-

rons processing altered sensory information would re-

spond with changes in the rates of discharge that are

modulated by GABAergic neurons.

The emphasis put on muscle spindles over other

receptor types as responsible for the changes has a rea-

son, although admittedly speculative. Electrophysiolog-
ical studies of the rat somatosensory cortex suggest an

overlap (co-extension) of sensory and motor areas ("sen-

sorimotor amalgam"), particularly at the level of the

hindlimb representation where layer V contains large

pyramidal cells that extend over, without interruption,

from the motor cortex (Hall and Lindholm, 1974). This

type of cortical organization would seem to lend support

to the hypothesis first proposed by Phillips (1969) that

information from muscle spindles to the cerebral cortex

is relayed through an oligosynaptic transcortical spindle

circuit for proprioceptive signals whose efferent limb is

the corticomotoneuronal projection (for discussion, see

Hummelsheim and Wiesendanger, 1985). Several subse-

quent studies have provided more evidence in favor of

this hypothesis (Landgren and Silfvenius, 1969, 1971;

McIntyre, 1974; Wiesendanger and Miles, 1982; Mat-

thews, 1991).

Whether the decrease in GABA immunoreactivity is

due to alterations in its synthetic activity or depletion due

to increased release is a matter of speculation that will

require additional studies (e.g., in situ hybridization).

Furthermore, electrophysiological recordings will be nec-

essary to assess patterns of activity and receptive field size

of cortical neurons influenced by GABA-mediated inhi-

bition under the same conditions. Since the changes we

have described are presumably transient [normal gait is
recovered after several weeks (Fox et al., 1993, 1994)],

it would be important to investigate changes in GABA-IR

during the recovery process and to assess whether these

alterations may become irreversible given a sufficiently

long period of hindlimb unloading.
An essential difference between HLS and sensory

deprivation by surgical means is that the former alters
GABA-IR in the somatosensory cortex through non-in-

vasive unloading of weight-bearing muscles. For exam-

ple, Warren et al. (1989) reported a 16% decrease of

glutamic acid decarboxylase (GAD) immunoreactive

cells in layer IV of the rat hindlimb somatosensory cortex
2 weeks after transection of the sciatic nerve. In exper-

iments conducted in monkey visual cortex after 2-3

weeks of eye enucleation, Hendry and Jones (1986)
found a 45% reduction of GABA-IR cells in layer IV. In

the same region, these investigators also showed a 36%
decrease of GABA-IR cells 11 weeks after eyelid suture.

We believe that HLS generates a more "realistic"

chain of events than surgical deafferentation since the

afferent input is not interrupted but rather significantly

disrupted by the environmental manipulation. Our results

suggest that non-invasive manipulations of the neuro-

muscular system (e.g., hindlimb suspension, alterations

in gravitational forces as in spaceflight or hypergravity)

can have significant effects on cortical circuitry. Other

lines of work based on non-invasive procedures support

this possibility, e.g., learning of new movements, com-

pensation of rearranged movements, limb positioning ef-

fects (see Jenkins et al., 1990; Merzenich et al., 1990;

Sanes et al., 1992). Since severely disruptive surgical

interventions are rare but the central nervous system

must constantly adjust movements in response to altered
environmental conditions, we believe that studies in in-

tact animals should be pursued to help clarify the mech-

anisms of cortical plasticity and adaptation under natural
conditions.
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The toxic action of chronic administration of streptomvcin sulfate tSTP) on :he
vestibular hair ceils of mammals is well documented.:->-6 Preliminary findings of our

g'roup in pigmented rats described severe alterations of motor abilities but an

absence of deleterious effects on sermcircular canal function ( assessed with Dostrota-

tory. nystagrnus) or auditory function (assessed with evoked auditory, potentials) after

prolonged treatment with'STP. These results suggest that STP soecificailv disruots
otoiith organ function in the rat2 ._ " "

Recently, we described gradual recovery of vestibular biochemistrv and function

in guinea pigs following chronic treatment" with STP. r In a morvhoioglcal study in

g-uinea pigs treated with gentarmcin rather than STP, hair ceil stereocilia were
regenerated after discontinuation of eentamicin injections.=

Because mature rodents are considered to have ceased _roducnon of sensory and

neuronal elements, these findings are intriguing, and thev'encoura_ed as to investi-

gate further the deleterious effects of STP and the possibie mechanism involved in

recovew after chronic administration of this antibiotic in the mammalian ear using
the pim'nented. Long-Evans rat as a model. The aim of our work is la) to confirm an

otoiithic organ tomcity for STP. lb) to identiN the ceil type affected, and (c) to assess
whether recove_ occurs in the pigmented rai.

In this paper we report analysis of swimming behavior and morvhology by ootical

microscopy of the sensory, epitheiium of the utricle in the pigmented rat during and
following STP treatment.

aThis project was financed in part by grant a003a-6-5-a.712_N from CONACvT to G.M.
-"E-mail: gmeza@ifesun l.ifisiol, unam.mx
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M_THODOLOGY

Trecu'men_ Prolocol

Twenty-day-old male Long-Evans rats were used in this study. Seventeen animals

were injected daily intramuscularly for ,t8 to 57 days with d0 mg/kg body weight of

STP (PISA Laboratories. Mexico) dissolved in physiological saline (SPS). Eleven

rats served as controls and received SPS injections for the same time interval and

conditions as their experimental comates. Three of the 57-day-treated rats and three

of the SPS-injected ammals were used to follow recovery, for S to !2 weeks and aici

not receive any STP or SPS beyond the -t8th day.

Swimming .4natysis

Swimming behavior was assessed at approximately one-week intervals by piacing

the rats in a water tank at 27°C and recording, on videotape, swimming activity, for -*5

sec..amalysis and classification of swimming patterns were pe_ormed after :he _est.

-ra_ t. Percentage of Rats Displaying Each of the Disrupted Swimming Patterns

Swimming Charac:ensucs

Vertical Swimming Barrel Corks_ew Forward/Bacx'ward
E.,menmental Condition with Roll Roiling Swimming Looping

-t8 Days of Treatment 90 60 80 -sO
8 Weeks Post Treatment lO0 O 33 0

Morphology

After completion of each e:merimental manipulation, two of the a.8-dav-treated

rats and _o of :he treated and allowed to recover animals, plus two of :he SPS

injected rats were deeply anesthetized and transcardially perfused with aldehyde

,'ixative. The auditory builae were extracted and posttixed in 1% osmium tetroxide.

dehydrated, and embedded in Araldite. Vestibular organs and half turns of cochlear

duct were sectioned at 1-,u.m thickness, stained with methylene blue and azure II, and

examined by bnghtfielci rmcroscopy.

RESULTS .M_D DISCUSSION

Abnormal swimming patterns consisting of vertical swimming with roils, barrel

rolling, corkscrew swimming, and forward and backward looping were observed with

varying frequencies in rats treated with STP. None of these responses was observed

in any test of control rats. Eight weeks post treatment, vertical swimming with roils
remained in all rats. One of the three rats showed corkscrew swimming, but no rat

showed barrei rolling or tooping. Hence, partial functional recovery was observed

(see Tm_ 1).

Histological examination of ST'P-treated rats revealed that in the utricular

macuia sensory, ceils presented fused stereocilia and pyknotic nuclei, in addition.

some of these sensory cells were in the process of being extruded from Ehe epitheiium
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(F_G. !). In contrast, sec:ions of the cristae and organ of Corti appeared normal In
STP-treated and "recovered" animals, neither fused macular hair cell stereociiia nor

pyknotic nuclei were observed, but bundle density was reduced. Thus. a partial
recove:'y or" sensory e_itheHum morphoio_ also occurred.

The abnormal'swimming behavior observed in rats chronically treated with STP

is identical to that observed in congenitally otolith-deficient mice and supports our

postulation of otolith organ-specific toxicity of STP in the rat. This is confirmed bv

our observation that degeneration of hair cells is restricted to the macular organs ot
antibiotic-treated rats. The partial reversibility of abnormal swimmang behavior in

animals ei__t weeks following treatment is in accord with our observations of partial
morphological recovery, in the same animals. These results show that ,hair ceil and

functional recovery can occur in a mammal subjec:ed to prolonged treatment with a
ciinically relevant to_c agent.
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Introduction

Instability of posture and gait in astronauts following

spaceflight (SF) is thought to result from muscle atrophy and

from changes in sensory-motor integration in the CNS that occur

during adaptation to micro-G. Individuals are thought to have

developed, during SF, adaptive changes for the processing of

proprioceptive, vestibular and visual sensory inputs [i] with

reduced weighting of gravity-based signals and increased

weighting of visual and tactile cues [2]. This sensory-motor

"rearrangement" in the CNS apparently occurs to optimize

neuromuscular system function for effective movement and

postural control in micro-G. However, these adaptive changes are

inappropriate for the ig environment and lead to disruptions in

posture and'gait on return to Earth.

Few reports are available on the effects of SF on the motor

behavior of animals. Rats studied following 18.5-19.5 days of SF

in the COSMOS program were described as being .."inert,

apathetic, slow"., and generally unstable [3, p. 334]. The

hindlimbs of these rats were .."thrust out from the body with

fingers pulled apart and the shin unnaturally pronated" [3, p.

335]. On the 6th postflight day motor behavior was described as

similar to that observed in preflight observations.

Improved understanding of the mechanisms leading to these

changes can be obtained in animal models through detailed

analysis of neural and molecular mechanisms related to gait. To

begin this process the posture and gait of rats were examined

following exposure to either SF or hindlimb suspension (HLS),

and during recovery from these conditions.

Methods

Subjects

Eighteen Sprague-Dawley rats (130 to 155 g) were obtained

from Harlan Laboratories for the SF study. For the HLS study 20

Sprague-Dawley rats (230 to 255 g) were obtained from Simonsen

Laboratories. Rats were randomly assigned to groups and were

maintained on 12:12 hr light:dark cycle with food and water

available ad libitum throughout the experiments.

Procedures

SF Conditions. During the 14 day flight on STS-58, rats (n=6)

in the Flight (FL) condition were maintained individually in
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cages measuring 10.2 X 10.2 X 20.3 cm. Rats = '
Control (FC) condition were ........ (n 6) In the Flight

5ne ground colony room v__h_u^±n cages or the same size in

• _va_xum uon_rol (VC) rats (n=6) were

housed in standard rat colony cages modified by placing a clear

acrylic divider lengthwise to create two sections measuring 22.9

X 45.7 X 20.3 cm. VC rats could rear during the 14 days of the

flight while those in the FC and FL conditions could not.

Animals in the VC and FC conditions were placed into appropriate

cages on the first day following launch. All animals were

transfered from the cages used during the flight period into

metabolic cages (30.5 X 30.5 X 30.5 cm) between 6 and 7 hr after

the time of landing (i.e., immediately after the initial test).

HLS Conditions. HLS was accomplished with a modified version

of the Morey-Holton technique [4]. A device was constructed

using Fas-Trac to attach a connector to the rat's tail. This

connector then was attached to a swivel hook that allowed free,

360o rotation within the 30.5 X 30.5 X 30.5 cm cage. The height

of this hook was adjusted so the hindlimbs of the rats were just
off the floor when in full extension With thi
hindlimbs of the rats ,-=_^, ,, • s procedure the

(anti-gravity) SUDDO_ _vJ were_unLoaded,, (HLU) from postura]

propelling themsel_s -.?_',==_? _ne animals moved about <_

control group (HLC) liv_U_ I- 5ne .zorelimbs. Rats (n=10) in the

. =_ zn slmllar cages but were not attachedto the suspenslon system.

Testinu Procedures. Beginning 6 hr after landing SF rats were

encouraged to locomote across a walkway (15 X 30 X 150 cm) with

clear acrylic walls and a glass floor. Light was passed through

the glass from the front to the back edge so that foot contact

could be viewed from below and recorded on videotape [5]. This

video record was combined with a profile view of the rats on a

split-screen display. Following the initial test on the day of

landing each rat was tested after 2, 4, 7 and 14 days of

recovery (Days R2, Rd, etc.). Quantitative assessments of

posture and limb movements were made by determining X-Y

coordinates of identifiable points using a PEAK TM TechnologiesMotion Analysis system.

In the HLS Study rats were tested within 5 rain following

removal from the suspension device (R0) and then on R2, R7, and

RId. (In addition, these animals were exposed to 3-5 tests of

the air-righting reflex and a 45-s swim test prior to testingfor gait on each test day.)

Results

Posture

When first tested 6 hr. after return from SF (R0) FL rats

walked slowly with the back dorsiflexed, the hindquarters lower

than in FC and VC animals and with the tail dragging on the

floor. Limb movements of FL rats could be described as

"hesitant.- Immediately after removal from HLS the rats also

walked slowly, but HLU rats walked with the back straight or

ventro-flexed, the hindquarters higher than HLC rats and with

the tail held off the floor. Both FL and HLU rats walked with a

sinusoidal, vertical oscillation of the pelvic region.
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Foot Placement and Hindlimb Extension during Walking

On R0 SF rats walked with extreme dorsiflexion of the ankle

(plantar extension) producing atypical foot placement that

resembled that seen in 10-day old rats [6] in which the foot

pads contact the floor only at the end of the stance phase. In

contrast, all HLS rats walked with normal foot-pad contact.

The elevation of the hindquarters and extension of the

hindlimb observed in the assessment of posture were examined

further by evaluating the distances from the base of the tail to

the floor (Fig. IA) and to the foot (Fig. IB) respectively

during walking. The base of the tail was significantly closer to

the floor on R0 in FL (p<.01) than in FC or VC rats. On R2 the

base of the tail of FL rats was higher than in FC or VC rats

(p<.01), but was not different on R7 or RI4. In contrast, the

base of the tail was significantly higher off the floor in HLU

animals than in control rats on R0 through R7 (ps<.001), but not

different from control rats on RI4. The hindlimbs were more

flexed in FL than in FC or VC rats on R0 (p<.005) but more

extended on R2 through R7 (ps<.05) . The hindlimb was more

extended in HLU rats than in control rats on R0 through R7

(ps<.03), but not different from control rats on RI4.

A B

6. HLC _1

_ vc

°":1 :t
I I I I I i

2 4 14 0 2 4 14
RECOVERY DAYS

Figure i. Elevation of the hindquarters measured as

distance from the base of the tail to the surface of the

walkway (Panel A) and leg extension measures as distance

from the base of the tail to the foot (Panel B)

Discussion

The hindlimb extension, dorsiflexion of the ankle, and

vertical oscillation of the pelvic region observed in FL and HLU

rats may result from an altered balance of flexor-extensor

muscles that is produced by treatments which decrease the

"mechanical use" of weight-bearing muscles. Atrophic effects in

SF and HLS rats are muscle-specific with slow extensors most

affected, fast extensors moderately affected and flexors least

affected [7, 8]. The effects of SF on physiological properties
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of muscle are less well known, but documented protein changes in

muscle are associated with lower excitability of the extensor

pool while the flexor pool is unaffected. Assessments of muscle

function in Salyut crewmembers indicated decreased strength and

an increased ratio between maximum amplitude of EMG and muscle

torque in leg extensors with no change in flexors [9]. These

changes presumably result in a shift toward relative dominance
of flexors over extensors.

Flexor dominance could produce dorsiflexion of the ankle

during stationary stance as reported here. In addition, when

there is extreme atrophy of the soleus, the relatively less

compromised biarticular gastrocnemius may become increasingly

important in dynamic ankle extension. Compromised activity of

the soleus could contribute to poor adjustment of the foot prior

to touchdown and to dorsiflexion during early stance when

activity of fast extensors normally is minimal. Because maximal

force of the gastrocnemius is length-dependent, gastrocnemius

activity that contributes to ankle extension may vary as the

length of the muscle changes due to biomechanical factors

related to knee and ankle extension. Such changes in force could

produce the vertical oscillation of the pelvis observed here.

Hyper-extension of the leg in SF and HLU rats may be a postural

adjustment to facilitate ankle movement by adjusting

gastronemius length to produce proper force for adaptive ankleextension.

Footnotes

Both experiments conformed to the Center's requirements for

the care and use of animals. Support was provided'by NASA Grant

NCC 2-723 and SJSU Foundation Grant 34-1614-0071 to R.A. Fox.
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